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Abstract

In this paper, I discuss the application of Principal Component Analysis
(PCA) in the financial domain, and specifically in portfolio management. I apply
PCA to time series of financial data (9 of the top Tech stocks by market value
from 2015 until today) in order to optimize portfolio investments. I conclude
that PCA is robust and is likely to produce stable portfolio returns.

1 Introduction

The aim of Principal Component Analysis (PCA) is to in a particular way
simplify data containing a lot of interrelated variables. In a broad sense, it
means finding linear combinations of the variables that account for most of the
data’s variation, in order to simplify the analysis all while preserving the data’s
original variation as much as possible. This method reduces the complexity of
analysis, as the data is made into a linear model, with fewer dimensions.

PCA involves applying a transformation to the data in order to obtain what
is called the uncorrelated principle components- which, when ordered, will con-
tain, in the first few, as much as possible of the original variables’ variations.
The number of components needed to capture most of the data’s variance will
depend on data and its structure.

More mathematically, and a part of which I will show in the proof at the
crux of this paper, PCA is an orthogonal linear transformation transforming (or
rotating in respect to the data mean) the data to a new coordinate system. The
first resulting principle component, corresponding to the first greatest variance,
will also correspond to the first coordinate, and so on with the descending
variances corresponding to following appropriately ranked coordinates.

It is important to note that before applying PCA, the data in question should
be prepared. The goal is to get the data as close to following a multivariate
normal distribution as possible. That is because data that follows a multivariate
normal distribution is fully parametrized by its mean and covariance matrix. In
particular, preparing the data for PCA involves centering the data by its mean,
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or ”demeaning” it. This ensures that the orthogonal linear transformation of
PCA, the rotation in respect to the data mean, is truly centered.

PCA is widely used in data science- for example, in face recognition, com-
pression or in finance, which I will touch upon later in this paper with the
example illustration of PCA.

In a geometric sense, the first of the ordered principal components will be
a line through (0, 0) closest to all the points in a perpendicular direction. In
contrast with Ordinary Least Squares (OLS), PCA solves a perpendicular least
squares optimization, or orthogonal regression. Regular regression, or OLS min-
imizes the vertical distance to the points, as seen in Figure 1.

Figure 1: Red: OLS, Blue: PCA

2 Proof

In this section, I provide a quick derivation of PCA. Essentially, I will show how
to acquire the maximum variance of the data in question, a key aspect of PCA.
I start with the following matrices:

• P , which has dimensions n x T , is the matrix of prices.
Specifically, P[i][j] represents the price of the ith asset at time j for i ∈
[1, n] and j ∈ [1, T ].

• R, which has dimensions n x (T − 1), is the matrix of specific returns
(difference of prices divided by the initial price).
Specifically, R[i][j] = (P[i][j+1] − P[i][j])/P[i][j] for i ∈ [1, n] and j ∈
[1, T − 1].
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Let us begin by centering each of the entries of R by the mean of each row.
We introduce R, which has dimensions n x 1, and is the matrix of means of
rows such that

R[i] =
1

T − 1

T−1∑
k=1

R[i][k].

Additionally, let X = R−R.
The covariance matrix is defined as Σ = 1

T−2 (XXT ).

Let uk be an n x 1 vector such that uk is the kth principal component of X. By
definition, the variance of the data matrix is maximized along the kth principal
component. The variance of X along the kth principal component is found as
follows:

V ar(XTuk) = uTkXX
Tuk = (T − 2)uTk Σuk.

The goal is to maximize V ar(XTuk) by choosing uk that maximizes the vari-
ance up to a constant multiplier.
Let k = 1. Then, we have a setup for a constrained optimization problem which
consists of maximizing the variance V ar(XTu1) under the constraint ||u1|| = 1.
Using Lagrange multipliers (denoted as λ1), we get:

max
(λ1,u1)

uT1 ΣTu1 − λ1(uT1 u1 − 1)

∂

∂u1
(uT1 Σu1 − λ1(uT1 u1 − 1)) = 0 = Σu1 − λ1u1

so
Σu1 = λ1u1.

The last equations suggests that u1 is an eigenvector of Σ with eigenvalue λ1.
We also have that,

V ar(XTu1) = (T − 2)uT1 Σu1 = (T − 2)uT1 λ1u1 = (T − 2)λ1.

Therefore, to maximize the variance, we maximize λ1 which translates to choos-
ing the eigenvector corresponding to the largest eigenvalue of Σ.
The next step is to compute the second principal component. Let k = 2. Then,
we have a setup for a constrained optimization problem which consists of max-
imizing the variance V ar(XTu2) under the constraints ||u2|| = 1 and u2 ⊥ u1.
Using Lagrange multipliers (denoted as λ2 and λ3), we get the following opti-
mization problem:

max
(λ2,λ3,u2)

uT2 ΣTu2 − λ2(uT2 u2 − 1)− λ3u
T
2 u1

∂

∂u2
(uT2 ΣTu2 − λ2(uT2 u2 − 1)− λ3u

T
2 u1) = 0 = Σu2 − λ2u2 − λ3u1.

By multiplying the equation above by uT1 to the left, we get:
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uT1 Σu2 − λ2u
T
1 u2 − λ3||u1||2 = 0

Then, using orthogonality of u1 and u2, we find:

λ3||u1||2 = 0 so λ3 = 0.

Thus we see that the second Lagrange multiplier is equal to 0. This means
that our optimization problem reduces to

Σu2 = λ2u2.

The last equations suggests that u2 is an eigenvector of Σ with eigenvalue λ2.
We write,

V ar(XTu2) = (T − 2)uT2 Σu2 = (T − 2)uT2 λ2u2 = (T − 2)λ2.

Therefore, to maximize the variance, we need to maximize λ2 which translates
to choosing the eigenvector corresponding to the second largest eigenvalue of Σ.
It can be shown in the same manner that the ith principal component of matrix
X corresponds to the eigenvector of the ith biggest eigenvalue of the matrix Σ.

3 Quantitative Application of Principal Compo-
nent Analysis

3.1 DataSet

In order to perform a PCA analysis on real stock trading data, I chose some of
the top technology company stocks in the US. The stocks chosen are: Apple,
Google, Microsoft, Facebook, Intel, Cisco, Nvidia, IBM and Qualcomm. The
analysis was done in the language R, and the data was imported from the Yahoo
Finance database using the package quantmod. The period we used to analyze
the data was from January 1st 2015 to May 1st 2018. The data is summarized
in figure 2.

3.2 Data Preparation

The original data matrix A′′′ has entries in the following form: the A′′′[i, j] entry
has the price of the ith stock on the closing of the jth of T days. In order for
the Principal Component Analysis to return meaningful results, we first have
to prepare the data. This includes the following simple steps:

1. Convert prices to price differences: A′′ will have entries such that: A′′[i, j] =
A′′′[i, j + 1]−A′′′[i, j]

2. Convert price differences to returns: A′ will have entries such that: A′[i, j] =
A′′[i,j]
A′′′[i,j]
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Figure 2: Stock Prices

3. Demean the data: A will have entries such thatA[i, j] = A′[i, j]− 1
T−2

∑T−1
k=1 A

′[i, k]

Following the data preparation, the covariance matrix becomes Σ = AAt

T−2 . Fi-
nally, the eigenvalues and eigenvectors of Σ (u, σ, v) are derived so that in the
end: A = ΣT−1

i=1 uiσiv
T
i . Each of the principal components PCi = uTi A will

explain λi

Σjλj
of the total variance (here and further, I use notation PC1, PC2,

etc for principal components).

3.3 Results

Based on the analysis performed, the first principal component explains almost
half of the total variance, the second one around 15% and the third one around
11%, as can be seen in figure 3.
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Figure 3:

This implies that the stocks of technology companies are not entirely inde-
pendent, but also do not exhibit absolute dependency on one another. It also
makes sense that the variance explanation is not very skewed towards PC1,
as our time frame was long and in the fast-paced technology industry there are
many changes. It would thus be unlikely to find one component that can explain
very large amounts of variance for the whole of our time frame.

This fact becomes even more obvious when looking at the graphs of loadings
of principal components, essentially, coordinates of PC1, PC2, and PC3 (Fig.
4).

One can see that for the first principal component, all of the coordinates
have similar values, thus PC1 explains the general trend of the tech industry.
The fact that the u vector corresponding to PC2 has the NVIDIA coefficient as
the only negative, tells us that the convolution of u2 with data will tell us the
behavior of NVIDIA returns as compared with respect to the other companies.
This fact suggested that NVIDIA returns were ”the most unstable” in some
sense over the period considered. On the other hand, since all coefficients are
positive and lie approximately in the same range, one can say that market as
a whole moves together at the majority of days. Finally, PC3 is similar in
the sense that it explains how the rest of the stocks are doing compared to
Qualcomm.
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Figure 4:

3.4 Stability of PCA

One can get a sense of how stable the analysis is by applying a rolling ”window”
principal component analysis. For that I take a k-month subsection of the data
and apply PCA, then I move the window by one day and apply it again. By
plotting the percentage of variance explained by each principal component, as
well as the loadings of each vector, one can determine how robust the analysis
is.
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Figure 5:

Looking at the 6-month variance explanation (Fig. 5) of PC1, we can see
that the analysis seems relatively stable, even though the tech industry is fast-
paced and turbulent. It shows that the variance explained by the top three or
four PCA factors is consistently high and stable. In fact, it explains more than
70% of the total variance of daily returns of the chosen stocks. It also agrees
with the rolling 6-month PC1 and PC2 loadings illustrated above, because it
manages to capture the instability of NVIDIA stock.

The following figures (Fig. 6) show the weight coefficients for the stocks in
the first three components that are obtained by applying PCA to the intervals
of k months (counting only business days) and these intervals are shifted by 1
day to compute the loadings for the all the days for which the data for next
k months is available. For k = 1, the data is too noisy to be useful. However
for the 6-month window the analysis seems relatively stable, except for around
date 300 on the 6-month plot.
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Figure 6:

3.5 Discussion of NVIDIA jump

For both the variance-explanation and the loading graphs, we observe that
NVIDIA returns start to cause the majority of variance starting approximately
x-point 300 of the 6-month graph and 400 of the 3-month graph. This is around
480 business days past the initial date in the dataset (1 of January, 2015), which
corresponds roughly to November of 2016.

When cross-checking the results with history of NVIDIA stock prices I dis-
covered that this company indeed exhibited a significant increase in stock prices
during November of 2016, following the release of the company’s promising quar-
terly report (see Fig.7). This jump in returns is much larger than that of any
other of the companies we are looking at, which means it will be responsible for
a larger amount of the total variance of the data.

9



Figure 7:

This observation was made judging purely from PCA analysis, showing that
PCA is an effective tool for finding the stocks with the biggest relative variance
in the historical data.

Figure 8:
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4 Second Application - European Stock Market
Indexes

4.1 Data Set

For the second application, I used data from the prices of European stock market
indexes. In particular, indexes from Belgium, France, Germany, Greece, Italy,
Netherlands, Spain, UK, and Switzerland. The indexes used are: BEL 20, CAC

All Tradeable, GDAXI, ATHEX, FTSE MIB, AEX, IBEX 35, FTSE, and SSMI.
The data can be summarized in figure 9.

Figure 9:

4.2 Results

After applying the same method of preparing the data as explained in the pre-
vious application, and apply the principal component analysis, we get that the
first principal component explains around 65% and the second one around 27%
of the total variance. The variance explanation for each of the components can
be viewed in figure 10. This makes intuitive sense, since Greece is one of the
most volatile countries here, so its price vs the others (as the loadings of PC2
show) would account for a large percentage of the total variance.
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Figure 10:

Furthermore, as seen in figure 11, the first principal component reflects the
general market trend of the European countries, while the second one reflects
how most countries are doing compared to Greece. The third principal compo-
nent reflects how other countries are doing compared to Italy and Spain.
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Figure 11:

4.3 Stability of Analysis

Again, as shown in the 6-month rolling principal component analysis, the load-
ings (Fig. 13) and the percentage of variance (Fig. 12) stay relatively constant.
This means that the analysis is robust and indicative of the actual market.
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Figure 12:

Figure 13:
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5 PCA Portfolios

A principal component portfolio is a basket of tradeable products where each one
is weighted by the PC weight. For example, for the technology stock application,
PC1 portfolio is expected to have the most of the variance, PC2 portfolio is
expected to have the second largest variance, etc. In the first example, PC1
realization reflects the general trend across technology stocks, and PC2 reflects
the divergence between the rest of the tech companies and NVIDIA.

Figure 14: Technology Stocks

In figure 14 we can see the returns of the portfolios based on each of the first
4 principal components of the technology stocks example. It is obvious that
the general trend of the tech industry is increasing, as shown by the realization
of PC1 and that shorting a large amount of NVidia while buying stocks of the
other companies reflected by PC2 would not be beneficial.

In figure 15 we can see the returns of the portfolios based on each of the
first 4 principal components of the country index example. It is interesting to
see that both betting on all the countries’ indexes, as well as betting against
Greece will be positive.
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Figure 15: Country Indexes

In general, the investment process usually blends a variety of strategies in an
overall portfolio, seeking diversification. The resulting portfolio may have unin-
tended overall exposure. PCA allows the investor to hedge volatile components
that do not contribute to positive expected value.

Specifically, for a portfolio with weights V across components, the exposure
to the nth PC component is V un. In order to eliminate exposure to the kth PC
factor, we can construct V ′ = V − (V uk)uk. The resulting portfolio will be PCk
neutral. That is V ′uk = 0. The variance of the resulting portfolio is V ′TΣV ′. If
the expected value of V and V ′ are close to each other, the investor essentially
preserves this expected value while reducing volatility.

6 Conclusion

After looking into the method of Principal Component Analysis and adequately
preparing the data, I perform PCA on two different datasets. I find that the
first principal component of PCA does indeed account for the most of the total
variance in both examples, dropping off dramatically with each PC. This makes
sense in context, considering that the stocks chosen are not entirely independent
of each other. The example, when applied to a wider time window, illustrates
the stability of the method as well. One can conclude, based on this example of
tech company stocks, that PCA proves to be a useful and valuable tool in data
analysis as well as discuss its use in portfolio optimization.
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